Remarks on the boundary set of spectral equipartitions.
نویسندگان
چکیده
Given a bounded open set in R2 (or in a Riemannian manifold), and a partition of Ω by k open sets ωj, we consider the quantity maxj λ(ωj), where λ(ωj) is the ground state energy of the Dirichlet realization of the Laplacian in ωj. We denote by Lk(Ω) the infimum of maxj λ(ω) over all k-partitions. A minimal k-partition is a partition that realizes the infimum. Although the analysis of minimal k-partitions is rather standard when k=2 (we find the nodal domains of a second eigenfunction), the analysis for higher values of k becomes non-trivial and quite interesting. Minimal partitions are in particular spectral equipartitions, i.e. the ground state energies λ(ωj) are all equal. The purpose of this paper is to revisit various properties of nodal sets, and to explore if they are also true for minimal partitions, or more generally for spectral equipartitions. We prove a lower bound for the length of the boundary set of a partition in the two-dimensional situation. We consider estimates involving the cardinality of the partition.
منابع مشابه
A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملSpectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface
This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 372 2007 شماره
صفحات -
تاریخ انتشار 2014